
In Praise of Scripting:
Real Programming
Pragmatism

Ronald P. Loui
Washington University in St. Louis

The author recommends that

scripting, not Java, be taught

first, asserting that students

should learn to love their

own possibilities before they

learn to loathe other people’s

restrictions.

T
oday, the boldness of John K. Ousterhout’s 1998 Com-
puter article, “Scripting: Higher Level Programming for
the 21st Century,” is vindicated.1 Every major observation
and benefit appears genuine. Significantly, IEEE Software
recently printed a canonical attack on scripting, “Java

Makes Scripting Languages Irrelevant?”2

This attack is interesting because the author seems unconvinced of
his own title; the paper concludes with more text devoted to praising
scripting languages than it expends in its declaration of Java’s progress
toward improved usability. Which is a better recommendation for
scripting remains unclear: the durability of Ousterhout’s text or this
recent critic’s indecisiveness.

Most shocking, the academic programming language community
continues to reject the change in programming practices brought
about by scripting. Enamored of the object-oriented paradigm,
especially in the undergraduate curriculum, never quite ready to
accept LAMP (Linux-Apache-MySql-Perl/Python/Php), and firmly
believing that more programming theory leads to better program-
ming practice, the academics remain deaf to Ousterhout.

That scripting has developed in the shadow of object-oriented
programming explains part of the problem. The two are not incom-
patible, but one philosophy has received the most attention. Script-
ing has been appearing language by language. Those who might
advocate a scripting philosophy will more likely praise their favor-
ite language, including Ousterhout, who spent much of his article
praising Tcl. Today, many questions about scripting persist:

Is there a scripting language appropriate for teaching CS1 (the
first programming course for majors in the undergraduate
computing curriculum)?
Is there room for scripting in enterprise or real-time
applications?
Is there a way for scripting practices to scale to larger software
engineering projects?

Fortunately, all these questions now have legitimate answers.

RECENT hisToRy
The years 1996 through 1998 were perhaps the most interesting

in the phylogeny of scripting. During that time, Perl “held the Web
together” and, along with a new Posix Awk and Gnu Gawk, shipped

•

•

•

	 22	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE	 22	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

P E R S P E C T I V E S

	 July 2008	 23

with every new Linux implementation, considerably
improving on older shell scripting practices.

Meanwhile, Web developers furiously deployed
JavaScript—itself bearing no important relation to
Java, having been renamed from “livescript” for purely
corporate purposes, apparently a sign of Netscape’s
solidarity with Sun (and even renamed “Jscript” under
Microsoft, now officially “ecmascript”). Also, a hand-
off from Tcl/Tk to Python took place as the language
of choice for GUI developers who
would not yield to Microsoft’s
Visual Basic.

Php appeared about the same
time, although it would take another
round of development before it
would start displacing server-side
Perl, ColdFusion, and Asp. All
these are now considered classic,
even prototypical, scripting languages. The most recent
scripting language to capture the imagination, Ruby, has
actually been around awhile, promising object-oriented
cleanliness with Perl-like productivity. In the Java world,
various forms of scripting have been produced in the
past three years that are compatible with their virtual
machines.

Java and the Web
By the mid-1990s, the shift from Scheme to Java as

the dominant CS1 language had already been com-
pleted, and the industry had ceased questioning C++’s
superiority over C. But Java applets were not well sup-
ported in early browsers, so the appeal of “write once,
run everywhere” quickly became derided as “write
once, debug everywhere.” Webpage forms, which used
the common gateway interface (CGI), proliferated, and
systems programming languages like C became recog-
nized as overkill for server-side programming.

Web developers quickly discovered the main advantage
of Perl for CGI forms processing, especially in the dot-
com setting: It minimized the programmer’s write time.
The algorithms were simple, network latency masked
small delays, and developers built database performance
into the database software—at which point the bottle-
neck became programming. Maintenance proved less
troublesome than feared as well, with developers and
management both happy to rewrite code for redesigned
services rather than deal with legacy code. Scripting, it
turned out, was so powerful and programmer-friendly
that creating new scripts from scratch was easier than
modifying old programs.

GUi surprise
As far back as 1990 most of the programming effort

had already shifted to writing the GUI, and the object-
oriented paradigm had much of its momentum in the
inheritance of interface widget behaviors. Surprisingly,

the interface that most programmers needed could be
had in a browser.

The HTML/JavaScript/CGI trio became the GUI and, if
more was needed, ambitious client-side JavaScript proved
more reliable than the browser’s Java virtual machine.
Moreover, the server-side program simply offered a better
way to distribute automation in a heterogeneous Internet
than the downloadable client-side program, whether the
download was in binary or bytecode.

pRoGRammiNG poWER
Although developers disagreed

on the exact necessary and suffi-
cient properties that characterized
scripting and distinguished it from
“more serious” programming, sev-
eral things had become clear about
scripting:

it permitted rapid development, often regarded as
merely “rapid prototyping,” but subsequently rec-
ognized as a kind of agile programming;
it provided the kind of high-level programming that
had always been envisioned in the ascent from low-
level assembly language programming to higher lev-
els of abstraction—it was concise and shielded pro-
grammers from concerning themselves with many
performance and memory management details;
it was well suited to working with data in heteroge-
neous, mixed-user settings where the majority of a
programming task consisted of transforming user
data, as opposed to the connecting of components,
which Java did well, or the control of a well-designed
system, which was C++’s realm; and
it was easier to get things right with short source
code, in which code that was not too terse or ver-
bose determined behavior, when all types could be
coerced into strings for debugging, when identifiers
were short, and when programmers could turn ideas
into code quickly without losing focus.

This last point was extremely counterintuitive. Strong
typing, a naming regimen, and verbosity were supposed to
help programmers avoid errors. But the programmers who
had to generate too many keystrokes and consult too many
pages, who had to search through many different files to
be sure of semantics, who had to follow too many rules,
and who had to sustain motivation and concentration over
a long period, became distracted and consequently ineffi-
cient. The language’s promise to discipline the programmer
quite simply did not reduce the tendency of humans to err.
It exchanged one kind of frequent error for another.

independent minds
Scripting languages became the distinctive tools of

independent-minded programmers: the hackers, yes,

•

•

•

•

strong typing, a naming
regimen, and verbosity
were supposed to help

programmers avoid errors.

	 24	 Computer

P E R S P E C T I V E S

but also the gifted and genius programmers who tended
to drive a project’s design and development, according
to Paul Graham.3 Scripting became the mark of autodi-
dacts, prodigies, and Third World programmers, the
inspired class, the people who had never had to “think
outside the box” because they had never been stuck
inside it.

Proper and professional software engineering sup-
posedly permits managers to level the playing field and
extract considerable productivity
from less talented and less motivated
programmers. This makes software
productivity a commodity, and pro-
grammers become disposable and
exchangeable. Scripting does not
promise this kind of disposability.
Some languages, notably Python,
Php, and Ruby, can support large-
scale professional software engi-
neering practice, but they are also quite usable by the
rugged individual, the eccentric, and the rebel.

A corollary to this difference between the mundane and
the liberating: Scripting was not enervating but actually
renewing. Programmers who viewed code generation in
“real languages” as tedious and tiresome viewed scripting
in contrast as rewarding self-expression or recreation.

semantics
The distinct characteristics of scripting languages that

produce these effects are usually enumerated as semantic
features, starting with low I/O specification costs, the
use of implicit coercion and weak typing, automatic vari-
able initialization with optional declaration, predomi-
nant use of associative arrays for storage and regular
expressions for pattern matching, reduced syntax, and
terse control structures. But the main reason for the pro-
ductivity gains can be found in the name scripting itself.
Scripting powerfully embeds a developer in an environ-
ment. In the same way that the dolphin reigns over the
open ocean, Lisp provides a powerful language for those
who would customize their Emacs, JavaScript is feral
among browsers, and many older scripting beasts still
rule the Linux jungle.

The basic idea of scripting even includes a hint of AI:
The scripting language grants high-level control to auto-
mate by capturing the intentions and routines normally
provided by a user or administrator. If recording and
replaying macros simulates a kind of autopilot, then
scripting offers a kind of proxy for human decision-mak-
ing. Nowhere is this clearer than in one-line embedded
Php, or in sysadmin shell scripting, or in the scripting of
artificial agents in computer games.

CURRENT CLaims
While it might have been risky for Ousterhout to

proclaim scripting on the rise in 1998, it would be folly

to dismiss the success of scripting today. Scripting lan-
guages are excellent choices for CS1. To me, Java-based
CS1 is the single greatest mistake in the history of com-
puting curricula. Students should learn to love their own
possibilities before they learn to loathe other people’s
restrictions.

There is a lot of the old fascist-versus-anarchist dispute
here, but there is also empirical evidence. I reported in
19964 that only the scripting programmers could generate

code fast enough to keep up with the
demands of the artificial intelligence
laboratory class. Even though stu-
dents could choose any language they
wanted, and many had to unlearn
top-down ways of doing things,
few could turn new ideas into code
without scripting. In the intervening
decade, little has changed.

Students who learn to script early
are empowered throughout their college years, especially
in the crucial Unix and Web environments. Those who
learn Java and C++ first are stifled by enterprise-sized
correctness. Early programmers must learn to be creative
and inventive, and they need programming tools that
support exploration rather than production. Software
engineering aesthetics should come after programming,
not the other way around.

scripting Cs1
What scripting language could be used for CS1? I per-

sonally prefer Gawk, JavaScript, Php, and Asp, mainly
because of their gentle learning curves. I don’t think Perl
would be a disaster; its imperfection would create many
teaching moments. But an emerging consensus in the
scripting community holds that Python is the right solu-
tion for freshman programming. Ruby would also be a
defensible choice.

Python and Ruby have the enviable properties that
almost no one dislikes them, and almost everyone
respects them. Both languages support a variety of
programming styles and paradigms and satisfy prac-
titioners and theoreticians equally. Both languages are
carefully enough designed that developers can demon-
strate “correct” programming practices and enforce
high standards of code quality. That Google stands by
Python provides added motivation for undergraduate
majors. Google originally used Python because Scott
Hassan, who wrote much of the prototype for Brin and
Page, had been mentored by an early Python guru and
because I was unable to convince him over many years
in St. Louis to switch to Gawk or Perl.

But do scripting solutions scale? What about the per-
formance gap when the algorithm faces large n? What
about software engineering on big projects? There has
been extensive discussion about scriptings’ scalability.
In the past, these debates have simply ended with the

if recording and replaying
macros simulates a kind of

autopilot, then scripting offers
a kind of proxy for human

decision-making.

	 July 2008	 25

concession that developers must rewrite large systems
in C or C++, once the scripting had served its proto-
typing duty.

multiple languages
Indeed, scripting languages are not the answer for long-

lasting, CPU-intensive nested loops. Matrix multiplica-
tion is simply faster in other languages. Developers can
easily identify such bottlenecks and rewrite the code in
a more appropriate language. But a
harder language or one with black-
box libraries of objects and methods
does not always offer the best perfor-
mance choice.

Often, we see that a team did not
implement efficient data organiza-
tion because it would have required
more code—code that they would
have attempted and likely success-
fully written in an easier program-
ming language. We saw this in the AI class with heuristic
search and computer vision, where brute force is better
in C, but complex heuristics are better than brute force,
and scripting is better for complex heuristics.

When algorithms are exponential, it usually doesn’t
matter what language developers use because most prac-
tical n will incur too great a cost. Again, the solution is
to write heuristics, and scripting is the top dog in that
house. Processors are so much faster than disks these
days that a single extra disk read can erase the CPU
advantage of using a compiled language instead of an
interpreted one.

Programmers also benefit from using multiple paradigms
and languages. Projects can and do contain a mix of script-
ing, high-performance programming, and professional
componentware. I weep when I think about the text pro-
cessing written in C under my managerial watch because
the programmer didn’t know Perl. Considering that there
are much better scripting tools for much of what gets pro-
grammed in Java and C++, perhaps the question should be
whether Java and C++ scale to enterprise projects.

pRaGmaTiCs
The real reason scripting blindsided academics is

because they lack practicality. Academia understandably
holds software practice at a distance. There is, however,
a purely intellectual reason why programming language
courses have only now warmed to scripting.

The historical concerns of programming language
theory have been syntax and semantics. Java’s amazing
contribution to computer science is that it raised so many
old-fashioned questions that occupied existing pro-
gramming language experts: How can it be compiled?
Why aren’t all of its data types first-class objects? Ruby
has perhaps had a calming influence lately because we
can also puzzle over its syntax and semantics, looking

inward, instead of the disruptive influence that Ruby
on Rails might have on Web programming, looking
outward.

But new questions beyond syntax and semantics
should be asked, such as what a particular language
is well-suited to achieve inexpensively, quickly, or ele-
gantly, especially with the new mix of platforms. People
have informal answers, but they have no frameworks to
help organize their knowledge. A need to control envi-

ronments with specific program-
ming and engineering preferences
drives the proliferation of script-
ing languages. Their rise demands
a new age of innovation in the
study of programming languages,
a new taxonomy, and a new set of
issues.

Linguists recognize something
above syntax and semantics,
what they call pragmatics,5 which

addresses the more abstract social and cognitive func-
tions of language: situations, speakers and hearers,
discourse, goals and uses, and performance. We are
entering an era of comparative programming language
study in which the issues are higher level, social, and
cognitive. We have experienced a primitive version of
programming language pragmatics when referring to
broad purposes: “this is a database query language” or
“this is a good language for teaching” or even “this is
a suitable language for scientists.”

Some basic questions have received little formal study
as language questions, although they have certainly been
noted as software engineering questions:

What is the average lifetime of a program written in
language X for programmers of type Y, for a pro-
gram of type Z?
What is the average time to complete a program in
language X for programmers of type Y, for a pro-
gram of type Z?
What is the average time spent authoring versus
debugging a program in language X for program-
mers of type Y, for a program of type Z?
What is the learning curve for language X, to reach
a specific competence—for example, to write a pro-
gram of type Z?
What level of concentration is required, on average,
to write in language X for programmers of type Y,
for a program of type Z?
What is the consumption of short-term memory?
What is the likelihood that a library function,
method, or object will be available in a user’s envi-
ronment?
What is the average time to start a runtime environ-
ment? What is the typical impact on the rest of the
system?

•

•

•

•

•

•
•

•

We are entering an era of
comparative programming

language study in which the
issues are higher level, social,

and cognitive.

	 26	 Computer

P E R S P E C T I V E S

Does language preference correlate with gender,
generation, IQ, or personality type?

Internet programming language “shootouts” and
“scriptometers” have sought to address some of the ques-
tions relevant to the choice of scripting language, but
these have only been first steps. For example, one site
reports on the shortest script in each scripting language
that can perform a simple task. But absolute brevity for
trivial tasks, such as “print hello world” is not as illu-
minating as typical brevity for real tasks, such as XML
parsing. Formulating meaningful, technically informed
measures of pragmatic desirability will require some
cleverness. Prechelt’s study6 is one of the best of this kind
so far, but it still lacks an essential framework.

M ichael Scott’s popular textbook, Programming
Language Pragmatics,7 is a fairly traditional
tome that concerns itself with parameter pass-

ing, types, and bindings. It’s hard to see why this book
merits pragmatics in its title, even as it goes to a second
edition with a chapter on scripting added. We need a
programming language pragmatics to go past the analy-
sis of syntax and semantics in the same way that linguis-
tics studies perlocution and illocution.

Pragmatic questions are not the easiest for mathemati-
cally inclined computer scientists to address. They refer
by nature to people and their habits, sociology, and the
day’s technological demands. An industrial psychol-

• ogy literature, apart from computing, has sometimes
addressed questions of this kind. But this kind of study
must become part of programming language theory
within computing. It’s the importance of just these kinds
of questions that makes programmers choose scripting
languages.

Ousterhout declared scripting on the rise, but perhaps
so too are programming language pragmatics. ■

References
 1. J.K. Ousterhout, “Scripting: Higher Level Programming for

the 21st Century,” Computer, Mar. 1998, pp. 23-30.
 2. D. Spinellis, “Java Makes Scripting Languages Irrelevant?”

IEEE Software, vol. 22, no. 3, 2005, pp. 70-71.
 3. P. Graham, Hackers and Painters, O’Reilly, 2004.
 4. R.P. Loui, “Why Gawk for AI?” SIGPLAN Notices, vol. 31,

no. 8, 1996, pp. 8-9.
 5. S. Levinson, Pragmatics, Cambridge University Press, 1983.
 6. L. Prechelt, “An Empirical Comparison of Seven Programming

Languages,” Computer, vol. 33, no. 10, 2000, pp. 23-29.
 7. M.L. Scott, Programming Language Pragmatics, Morgan

Kaufmann, 2000.

Ronald P. Loui is an associate professor of computer
science and engineering at Washington University in St.
Louis. His research interests include Web programming,
artificial intelligence, and hardware-software codesign.
Loui received a PhD in computer science from the Uni-
versity of Rochester. Contact him at loui@cse.wustl.edu.

